Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Intervalo de ano
1.
Front Immunol ; 14: 1129705, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2288994

RESUMO

COVID-19 pandemic continues to spread throughout the world with an urgent demand for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a bacterial vector COVID-19 vaccine (aPA-RBD) that carries the gene for the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Live-attenuated strains of Pseudomonas aeruginosa (aPA) were constructed which express the recombinant RBD and effectively deliver RBD protein into various antigen presenting cells through bacterial type 3 secretion system (T3SS) in vitro. In mice, two-dose of intranasal aPA-RBD vaccinations elicited the development of RBD-specific serum IgG and IgM. Importantly, the sera from the immunized mice were able to neutralize host cell infections by SARS-CoV-2 pseudovirus as well as the authentic virus variants potently. T-cell responses of immunized mice were assessed by enzyme-linked immunospot (ELISPOT) and intracellular cytokine staining (ICS) assays. aPA-RBD vaccinations can elicit RBD-specific CD4+and CD8+T cell responses. T3SS-based RBD intracellular delivery heightens the efficiency of antigen presentation and enables the aPA-RBD vaccine to elicit CD8+T cell response. Thus, aPA vector has the potential as an inexpensive, readily manufactured, and respiratory tract vaccination route vaccine platform for other pathogens.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Sistemas de Secreção Tipo III , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2
3.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.11.04.20226191

RESUMO

Wastewater monitoring for SARS-CoV-2 has been suggested as an epidemiological indicator of community infection dynamics and disease prevalence. We report wastewater viral RNA levels of SARS-CoV-2 in a major metropolis serving over 3.6 million people geographically spread over 39 distinct sampling sites. Viral RNA levels were followed weekly for 22 weeks, both before, during, and after a major surge in cases, and simultaneously by two independent laboratories. We found SARS-CoV-2 RNA wastewater levels were a strong predictive indicator of trends in the nasal positivity rate two-weeks in advance. Furthermore, wastewater viral RNA loads demonstrated robust tracking of positivity rate for populations served by individual treatment plants, findings which were used in real-time to make public health interventions, including deployment of testing and education strike teams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA